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Outline

» Metacalibration

» Selection Effects

» Additive Bias—eorreetion | improvied this by a
factor of 10, but cut from this talk for sake of
brevity.



Shear Accuracy Requirements

» In order to measure the Dark Energy
equation of state to the desired accuracy for
DES/LSST, we must measure shear with
exquisite accuracy.
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» LSST Requirements

» Multiplicative errors: m < 0.001
» Additive errors: ¢ < 0.0001



Metacalibration Idea from Eric Huff

» Say we have a biased shear estimator e. Then we can write
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» Use image manipulation to estimate the derivative of the
estimator with respect to shear
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» Deconvolve the PSF

» Shear the image by a small amount

» Reconvolve by the PSF. Use a slightly larger PSF to
suppress the noise amplification



Metacalibration Idea from Eric Huff

» Corrects for modeling biases
» Corrects for ordinary noise-related biases
» Works well at high shear.



Correlated Noise

» These convolutions and shears result in correlated noise
Last talk I showed how to correct for this
» Since then I have put the last pieces together

» Selection effects
» Additive bias



Selection Effects

» Applying a selection to objects, for example on the
signal-to-noise ratio S/N, can indirectly select the shapes
of galaxies and result in a biased shear recover.

» For example, putting a threshold on S/N tends to select
less elliptical galaxies.



Selection Effects

» The mean shape given selection can be written as
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where P(e) is the probability distribution of ellipticities and S(e) is the
probability of selection.
» The response is then
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The first term is the response R we derived before, with selections based on

the unsheared object parameters. The second term is the response of the
ellipticity to selections. We can approximate the derivative using a finite
difference:
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Selection Effects

» Continuing...
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» We can thus rewrite this in terms of the mean ellipticity when selections are
based on the sheared parameters:




S/N thresholds
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Select objects with S/N greater than
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S/N ranges

Select objects with S/N within some range. Split into 3 equal
number bins
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